Abstract

Adult female mosquitoes need blood to develop their eggs and both sexes use nectar and honeydew as carbohydrate resources for flight, survival and to enhance reproduction. However, there are also a few reports in the literature of mosquitoes feeding on haemolymph of soft-bodied insects such as caterpillars. The frequency and significance of this entomophagous behavior is not well understood, but is thought to be a vestige of ancestral feeding behavior or an opportunistic behavior that has evolved over time. In our current paper we investigated the extent to which the malaria mosquito, Anopheles stephensi, is attracted to, and can successfully feed on, larvae of two common moth species, Manduca sexta and Heliothis subflexa. Using y-tube olfactometer assays we found that female An. stephensi readily flew upwind to and landed on the caterpillars of both moth species. The nature of the volatile cues used in host location remains unclear but respirometer studies suggest a possible role of CO2. Laboratory cage assays further showed that the female mosquitoes were able to actively feed on moth larvae and gain sufficient nutritional benefit to influence survival. The extent to which such an opportunistic behavior occurs in the field has yet to be explored but our results suggest that this haemolymph feeding behavior could play a role in malaria mosquito life history and could provide a novel mechanism for horizontal transmission of pathogens and other micro-organisms between hosts.

Highlights

  • Speciation in mosquitoes began to accelerate during the Mesozoic era (65 million years ago), corresponding to the establishment of terrestrial dwellings and nests by birds, mammals and reptiles [1]

  • The proboscis extension and feeding behavior of triatomine on cockroaches suggests that arthropod haemolymph represents an alternative source of food for triatomines, and they have partially conserved their entomophagous behavior during their evolution to haematophagy [9]

  • The caterpillar feeding behavior of mosquitos’ suggest that they have not completely abandoned the entomophagous behavior during evolution and it is still conserved as an opportunistic behavior among dipteran blood feeding insects such as mosquitoes

Read more

Summary

Introduction

Speciation in mosquitoes began to accelerate during the Mesozoic era (65 million years ago), corresponding to the establishment of terrestrial dwellings and nests by birds, mammals and reptiles [1]. Adult female mosquitoes are primarily blood-feeders that require blood proteins for developing their eggs [2] They feed on a wide range of hosts including a variety of vertebrates. Historic studies report black flies feeding on butterfly pupae [10] and mosquitoes attacking small dipterans and cicadas [11] and caterpillars [12,13]. This potential for mosquito entomophagy has been generally ignored until recently [14]. The caterpillar feeding behavior of mosquitos’ suggest that they have not completely abandoned the entomophagous behavior during evolution and it is still conserved as an opportunistic behavior among dipteran blood feeding insects such as mosquitoes

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call