Abstract

ABSTRACT Malaria is a parasitic disease distributed in tropical areas but with a high number of imported cases in non-endemic countries. The most specific and sensitive malaria diagnostic methods are PCR and LAMP. However, both require specific equipment, extraction procedures and a cold chain. This study aims to solve some limitations of LAMP method with the optimization and validation of six LAMP assays, genus and species-specific, using an easy and fast extraction method, the incorporation of a reaction control assay, two ways (Dual) of result reading and reagent lyophilization. The Dual-LAMP assays were validated against the Nested-Multiplex Malaria PCR. A conventional column and saline extraction methods, and the use of lyophilized reaction tubes were also assessed. A new reaction control Dual-LAMP-RC assay was designed. Dual-LAMP-Pspp assay showed no cross-reactivity with other parasites, repeatability and reproducibility of 100%, a significant correlation between parasite concentration and time to amplification and a LoD of 1.22 parasites/µl and 5.82 parasites/µl using column and saline extraction methods, respectively. Sensitivity and specificity of the six Dual-LAMP assays reach values of 100% or close to this, being lower for the Dual-LAMP-Pm. The Dual-LAMP-RC assay worked as expected. Lyophilized Dual-LAMP results were concordant with the reference method. Dual-LAMP malaria assays with the addition of a new reaction control LAMP assay and the use of a fast and easy saline extraction method, provided low limit of detection, no cross-reactivity, and good sensitivity and specificity. Furthermore, the reagent lyophilization and the dual result reading allow their use in most settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call