Abstract
After transmission by infected mosquitoes, malaria sporozoites rapidly travel to the liver. To infect hepatocytes, sporozoites traverse Kupffer cells, but surprisingly, the parasites are not killed by these resident macrophages of the liver. Here we show that Plasmodium sporozoites and recombinant circumsporozoite protein (CSP) suppress the respiratory burst in Kupffer cells. Sporozoites and CSP increased the intracellular concentration of cyclic adenosyl mono-phosphate (cAMP) and inositol 1,4,5-triphosphate in Kupffer cells, but not in hepatocytes or liver endothelia. Preincubation with cAMP analogues or inhibition of phosphodiesterase also inhibited the respiratory burst. By contrast, adenylyl cyclase inhibition abrogated the suppressive effect of sporozoites. Selective protein kinase A (PKA) inhibitors failed to reverse the CSP-mediated blockage and stimulation of the exchange protein directly activated by cAMP (EPAC), but not PKA inhibited the respiratory burst. Both blockage of the low-density lipoprotein receptor-related protein (LRP-1) with receptor-associated protein and elimination of cell surface proteoglycans inhibited the cAMP increase in Kupffer cells. We propose that by binding of CSP to LRP-1 and cell surface proteoglycans, malaria sporozoites induce a cAMP/EPAC-dependent, but PKA-independent signal transduction pathway that suppresses defence mechanisms in Kupffer cells. This allows the sporozoites to safely pass through these professional phagocytes and to develop inside neighbouring hepatocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.