Abstract

Cognitive theories have been proposed to clarify the causes and symptoms of dyslexia. However, correlations between local network parameters of white matter connectivity and literacy skills remain poorly known. An unbiased hypothesis-free approach was adopted to examine the correlations between literacy symptoms (reading and spelling) and hub-based white matter networks' connectivity parameters [nodal degree fractional anisotropy (FA) values] of 90 brain regions based on Anatomical Atlas Labels (AAL) in a group of French children with dyslexia aged 9–14 years. Results revealed that the higher the right fusiform gyrus's (FFG) nodal degree FA values, the lower the reading accuracy for words and pseudowords in dyslexic children. The results indicate that the severity of word/pseudoword reading symptoms in dyslexia relates to a white matter network centered around the right FFG. The negative correlation between right FFG network connectivity and reading accuracy, in particular pseudoword reading accuracy, suggests that right FFG represents a maladaptive compensation towards a general orthography-to-phonology decoding ability in developmental dyslexia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.