Abstract

Aluminate spinel type ${{\rm MAl}_2}{{\rm O}_4}$MAl2O4 (M=Ba or Mg) materials prepared using the combustion synthesis method were annealed either in an air or carbon atmosphere. The materials were characterized using X-ray diffraction, scanning electron microscopy, diffuse reflectance spectra, electrochemical impedance spectroscopy, and photoluminescence (PL) measurements. Their photocatalytic activity was evaluated for the dye degradation and hydrogen evolution. Methylene blue (15 ppm) was completely degraded using the air-annealed barium aluminate after 90 min, while a maximum hydrogen generation rate of $97 . 0 \;{\rm\unicode{x00B5}{\rm mol}\cdot{\rm h}^{ - 1}\cdot{\rm g}^{ - 1}}$97.0µmol⋅h-1⋅g-1 was achieved using the carbon-annealed magnesium aluminate. The results suggest that air-annealed photocatalysts are suitable for oxidation-dependent reactions, while carbon annealing may enhance reduction-dependent reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.