Abstract
The first section of this paper yields a sufficient condition for a Mal'cev–Neumann ring of formal series to be a noncrossed product division algebra. This result is used in Sec. 2 to give an elementary proof of the existence of noncrossed product division algebras (of degree 8 or degree p2 for p any odd prime). The arguments are based on those of Hanke in [A direct approach to noncrossed product division algebras, thesis dissertation, Postdam (2001), An explicit example of a noncrossed product division algebra, Math. Nachr.251 (2004) 51–68, A twisted Laurent series ring that is a noncrossed product, Israel. J. Math.150 (2005) 199–2003].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.