Abstract

Despite the ubiquity of bilateral symmetry among animals, a long‐standing mystery centers on why parasites that infect paired organs often do so non‐randomly. Examples from diverse host and parasite taxa continue to accumulate, yet little is known about their causes or implications for host–parasite fitness. We combined field surveys, experimental infections, and parasite choice assays to evaluate both competing explanations for – and consequences of – asymmetric infections of amphibian kidneys by echinostome trematodes, which are widespread and potentially pathogenic infections of larval amphibians. Samples from 6001 hosts representing 26 species indicated that echinostome infections exhibit a consistent, right‐kidney bias, with ˜ 62% of parasites in the right kidney. This pattern could not be explained by variation in kidney size or total infection. Experimental infections of three anuran species reproduced this pattern, with 64% of infections in the right kidney, and indicated it was not the result of differential host or parasite mortality. Based on sequential infection experiments and parasite choice assays, we further showed that earlier infections did not affect the distribution of subsequently colonizing parasites and that echinostome cercariae followed host‐derived cues rather than exhibiting congenital ‘sidedness’. We advance the hypothesis that variation in the position of the right kidney along the anterior–posterior axis controls cue strength in the right nephric duct and thus determines parasite encystment. Correspondingly, anatomical measurements from a subset of larval amphibian hosts revealed that the relative position of the right kidney explained 83% of the variation in infection bias, with no additional contributions associated with kidney volume or host size. We also show that the degree of right‐kidney bias associated positively with host growth in experiments. Morphological asymmetries could therefore function as a unique form of tolerance to mitigate the consequences of infection, despite the oft‐cited costs of asymmetry for mate selection and enemy vulnerability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.