Abstract

Bioluminescence imaging (BLI) takes advantage of the light-emitting properties of luciferase enzymes, which produce light upon oxidizing a substrate (i.e., D-luciferin) in the presence of molecular oxygen and energy. Photons emitted from living tissues can be detected and quantified by a highly sensitive charge-coupled device camera, enabling the investigator to noninvasively analyze the dynamics of biomolecular reactions in a variety of living model organisms such as transgenic mice. BLI has been used extensively in cancer research, cell transplantation, and for monitoring of infectious diseases, but only recently experimental models have been designed to study processes and pathways in neurological disorders such as Alzheimer disease, Parkinson disease, or amyotrophic lateral sclerosis. In this review, we highlight recent applications of BLI in neuroscience, including transgene expression in the brain, longitudinal studies of neuroinflammatory responses to neurodegeneration and injury, and in vivo imaging studies of neurogenesis and mitochondrial toxicity. Finally, we highlight some new developments of BLI compounds and luciferase substrates with promising potential for in vivo studies of neurological dysfunctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.