Abstract

Purpose Speech recognition relies upon a listener's successful pairing of the acoustic-phonetic details from the bottom-up input with top-down linguistic processing of the incoming speech stream. When the speech is spectrally degraded, such as through a cochlear implant (CI), this role of top-down processing is poorly understood. This study explored the interactions of top-down processing, specifically the use of semantic context during sentence recognition, and the relative contributions of different neurocognitive functions during speech recognition in adult CI users. Method Data from 41 experienced adult CI users were collected and used in analyses. Participants were tested for recognition and immediate repetition of speech materials in the clear. They were asked to repeat 2 sets of sentence materials, 1 that was semantically meaningful and 1 that was syntactically appropriate but semantically anomalous. Participants also were tested on 4 visual measures of neurocognitive functioning to assess working memory capacity (Digit Span; Wechsler, 2004), speed of lexical access (Test of Word Reading Efficiency; Torgeson, Wagner, & Rashotte, 1999), inhibitory control (Stroop; Stroop, 1935), and nonverbal fluid reasoning (Raven's Progressive Matrices; Raven, 2000). Results Individual listeners' inhibitory control predicted recognition of meaningful sentences when controlling for performance on anomalous sentences, our proxy for the quality of the bottom-up input. Additionally, speed of lexical access and nonverbal reasoning predicted recognition of anomalous sentences. Conclusions Findings from this study identified inhibitory control as a potential mechanism at work when listeners make use of semantic context during sentence recognition. Moreover, speed of lexical access and nonverbal reasoning were associated with recognition of sentences that lacked semantic context. These results motivate the development of improved comprehensive rehabilitative approaches for adult patients with CIs to optimize use of top-down processing and underlying core neurocognitive functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call