Abstract

Embodiment perspectives from the cognitive sciences offer a rethinking of the role of sensorimotor activity in human learning, knowing, and reasoning. Educational researchers have been evaluating whether and how these perspectives might inform the theory and practice of STEM instruction. Some of these researchers have created technological systems, where students solve sensorimotor interaction problems as cognitive entry into curricular content. However, the field has yet to agree on a conceptually coherent and empirically validated design framework, inspired by embodiment perspectives, for developing these instructional resources. A stumbling block toward such consensus, we propose, is an implicit disagreement among educational researchers on the relation between physical movement and conceptual learning. This hypothesized disagreement could explain the contrasting choices we witness among current designs for learning with respect to instructional methodology for cultivating new physical actions – whereas some researchers use an approach of direct instruction, such as explicit teaching of gestures, others use an indirect approach, where students must discover effective movements to solve a task. Prior to comparing these approaches, it may help first to clarify key constructs. In this theoretical essay we draw on embodiment and systems literature as well as findings from our design research so as to offer the following taxonomy that may facilitate discourse about movement in STEM learning: (1) distal movement is the technologically extended effect of physical movement on the environment; (2) proximal movement is the physical movements themselves; and (3) sensorimotor schemes are the routinized patterns of cognitive activity that become enacted through proximal movement by orienting on so-called attentional anchors. Attentional anchors are goal-oriented phenomenological objects or enactive perceptions (“sensori-”) that organize proximal movement to effect distal movement (“-motor”). All three facets of movement must be considered in analyzing embodied learning processes. We demonstrate that indirect movement instruction enables students to develop new sensorimotor schemes including attentional anchors as idiosyncratic solutions to physical interaction problems. These schemes are, by necessity, grounded in students’ own agentive relation to the world while also grounding target content such as mathematical notions.

Highlights

  • Embodiment rising In recent decades, we have witnessed a collective reevaluation of what we know about the human cognitive architecture (Núñez & Freeman, 1999)

  • Whereas researchers informed by embodiment theory generally agree that physical movement plays formative roles in fostering conceptual learning, they have yet to agree over methodology for engaging students in performing these movements (Abrahamson, 2015; Glenberg, 2006; Lindgren & Johnson-Glenberg, 2013; Pouw, van Gog, & Paas, 2014)

  • We have proposed that this practical question begs the theoretical question of what we mean when we talk about physical movement

Read more

Summary

Introduction

Embodiment rising In recent decades, we have witnessed a collective reevaluation of what we know about the human cognitive architecture (Núñez & Freeman, 1999). One intriguing set of proposals, loosely referred to as embodiment theory, offer views of the mind as extending out of the head, through the body, and into the natural and sociocultural ecology (Anderson, 2003; Wilson, 2002; Yanchar, Spackman, & Faulconer, 2013) By these views, which may vary widely in their commitments and details, mind and body are not separate entities but instead form an irreducible ontology, wherein sensorimotor activity is intrinsic to learning, knowing, and reasoning. We are interested in understanding relations between physical actions and conceptual learning as these relations bear on theoretical and pragmatic problems in the research field of mathematics education and perhaps beyond into other STEM domains. We will offer a taxonomy of movement that, we hope, could lead to empirical work evaluating best instructional methodology for action-based learning

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call