Abstract

Ab initio modeling of conical intersection wave packet dynamics is crucial for various photochemical, photophysical, and biological processes. However, adiabatic electronic states obtained from electronic structure computations involve random phases, or more generally, random gauge fixings, which cannot be directly used in the modeling of nonadiabatic wave packet simulations. Here we develop a random-gauge local diabatic representation that allows an exact modeling of conical intersection dynamics directly using the adiabatic electronic states with phases randomly assigned during the electronic structure computations. Its utility is demonstrated by an exact ab initio modeling of the two-dimensional Shin-Metiu model with and without an external magnetic field. Our results provide a simple approach to integrating the electronic structure computations into nonadiabatic quantum dynamics, thus paving the way for ab initio modeling of conical intersection dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.