Abstract

The superb precision of an atomic clock is derived from its stability. Atomic clocks based on optical (rather than microwave) frequencies are attractive because of their potential for high stability, which scales with operational frequency. Nevertheless, optical clocks have not yet realized this vast potential, due in large part to limitations of the laser used to excite the atomic resonance. To address this problem, we demonstrate a cavity-stabilized laser system with a reduced thermal noise floor, exhibiting a fractional frequency instability of 2 × 10−16. We use this laser as a stable optical source in a ytterbium optical lattice clock to resolve an ultranarrow 1 Hz linewidth for the 518 THz clock transition. With the stable laser source and the signal-to-noise ratio afforded by the ytterbium optical clock, we dramatically reduce key stability limitations of the clock, and make measurements consistent with a clock instability of 5 × 10−16 . Scientists demonstrate a cavity-stabilized laser system with a reduced thermal noise floor, exhibiting a fractional frequency instability of 2 × 10−16. They use this system as a stable optical source in an ytterbium optical lattice clock to resolve an ultranarrow 1 Hz linewidth for the 518 THz clock transition. Consistent measurements with a clock instability of 5 × 10−16/√τ are reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call