Abstract
The paper begins by giving an algebraic structure on a set of coset representatives for the left action of a subgroup on a group. From this we construct a non-trivially associated tensor category. Also a double construction is given, and this allows the construction of a non-trivially associated braided tensor category. In this category we explicitly reconstruct a braided Hopf algebra, whose representations comprise the category itself.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.