Abstract

Solar-driven interfacial desalination is widely considered to be a promising technology to address the global water crisis. This study proposes a novel electrospun nanofiber-based all-in-one vertically interfacial solar evaporator endowed with a high steam generation rate, steady omnidirectional evaporation, and enduring ultrahigh-salinity brine desalination. In particular, the electrospun nanofiber is collected into the tubular structure, followed by spraying with a dense crosslinked poly(vinyl alcohol) film, which renders them sufficiently strong for the preparation of a vertically array evaporator. The integrated evaporator made an individual capillary as a unit to form multiple thermal localization interfaces and steam dissipation channels, realizing zone heating of water. Thus a high steam generation rate exceeding 4.0kgm-2h-1 in pure water is demonstrated even under omnidirectional sunlight, and outperforms existing evaporators. Moreover, salt ions in the photothermal layer can be effectively transported to the water in capillaries and subsequently exchanged with the bulk water due to the strong action of capillary force, which ensures an ultrahigh desalination rate (≈12.5kgm-2h-1 under 3 sun) in 25wt% concentration brine over 300min. As such, this work provides a meaningful roadmap for the development of state-of-the-art solar-driven interfacial desalination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call