Abstract

In 2011, Beeler and Hoilman generalized the game of peg solitaire to arbitrary connected graphs. Since then peg solitaire has been considered on quite a few classes of graphs. Beeler and Gray introduced the natural idea of adding edges to make an unsolvable graph solvable. Recently, the graph invariant m s ( G ) , which is the minimal number of additional edges needed to make G solvable, has been introduced and investigated on banana trees by the authors. In this article, we determine m s ( G ) for several families of unsolvable graphs. Furthermore, we provide some general results for this number of Hamiltonian graphs and graphs obtained via binary graph operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.