Abstract

The accuracy of machine learning systems is a widely studied research topic. Established techniques such as cross validation predict the accuracy on unseen data of the classifier produced by applying a given learning method to a given training data set. However, they do not predict whether incurring the cost of obtaining more data and undergoing further training will lead to higher accuracy. In this chapter, we investigate techniques for making such early predictions. We note that when a machine learning algorithm is presented with a training set the classifier produced, and hence its error, will depend on the characteristics of the algorithm, on training set’s size, and also on its specific composition. In particular we hypothesize that if a number of classifiers are produced, and their observed error is decomposed into bias and variance terms, then although these components may behave differently, their behavior may be predictable. Experimental results confirm this hypothesis, and show that our predictions are very highly correlated with the values observed after undertaking the extra training. This has particular relevance to learning in nonstationary environments, since we can use our characterization of bias and variance to detect whether perceived changes in the data stream arise from sampling variability or because the underlying data distributions have changed, which can be perceived as changes in bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.