Abstract

Calibration inductive logics are based on accepting estimates of relative frequencies, which are used to generate imprecise probabilities. In turn, these imprecise probabilities are intended to guide beliefs and decisions — a process called “calibration”. Two prominent examples are Henry E. Kyburg's system of Evidential Probability and Jon Williamson's version of Objective Bayesianism. There are many unexplored questions about these logics. How well do they perform in the short-run? Under what circumstances do they do better or worse? What is their performance relative to traditional Bayesianism?In this article, we develop an agent-based model of a classic binomial decision problem, including players based on variations of Evidential Probability and Objective Bayesianism. We compare the performances of these players, including against a benchmark player who uses standard Bayesian inductive logic. We find that the calibrated players can match the performance of the Bayesian player, but only with particular acceptance thresholds and decision rules. Among other points, our discussion raises some challenges for characterising “cautious” reasoning using imprecise probabilities. Thus, we demonstrate a new way of systematically comparing imprecise probability systems, and we conclude that calibration inductive logics are surprisingly promising for making decisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call