Abstract

Yeast has at least three partially characterized aldehyde dehydrogenases. Previous studies by gene disrupted in our laboratory revealed that the Saccharomyces cerevisiae cytosol ALDH1 played an important role in ethanol metabolism as did the class 2 mitochondrial enzyme. To date, few mutagenesis studies have been performed with the yeast enzymes. An important human variant of ALDH is one found in Asian People. In it, the glutamate at position 487 is replaced by a lysine. This glutamate interacts with an arginine (475) that is located in the subunit that makes up the dimer pair in the tetrameric enzyme. Sequence alignment shows that these two residues are located at positions 492 and 480, respectively, in the yeast class 1 enzyme which shares just 45% sequence identity with the human enzymes. Mutating glutamate 492 to lysine produced an enzyme with altered kinetic properties when compared to the wild-type glutamate-enzyme. The K m for NADP of E492K increased to nearly 3600 μM compare to 40 μM for wild-type enzyme. The specific activity decreased more than 10-fold with respect to the recombinant wild-type yeast enzyme. Moreover, substituting a glutamine for a glutamate was not detrimental in that the E492Q had wild-type-like K m for NADP and V max. These properties were similar to the changes found with the human class 2 E487K mutant form. Further, mutating arginine 480 to glutamine produced an enzyme that exhibited positive cooperativity in NADP binding. The K m for NADP increased 11-fold with a Hill coefficient of 1.6. The NADP-dependent activity of R480Q mutant was 60% of wild-type enzyme. Again, these results are very similar to what we recently showed to occur with the human enzyme [Biochemistry 39 (2000) 5295–5302]. These findings show that the even though the glutamate and arginine residues are not conserved, similar changes occur in both the human and the yeast enzyme when either is mutated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call