Abstract

AbstractAir travelling is the second largest travelling medium used by people. In future it is expected to be the first choice for the travellers. As increase in the price of oil cost of air travelling is getting higher. Engineers are forced to find the cheaper means of travelling by innovating new techniques. This paper presents the new idea to reduce air travelling cost by reducing drag, which is major driving factor of high fuel consumption. Two-dimensional and three-dimensional shock control contour bumps have been designed and analysed for a supercritical wing section with the aim of transonic wave drag reduction. A supercritical airfoil (NACA SC (02)-0714) has been selected for this study considering the fact that most modern jet transport aircraft that operate in the transonic flow regime (cruise at transonic speeds) employ supercritical airfoil sections. It is to be noted that a decrease in the transonic wave drag without loss in lift would result in an increased lift to drag ratio, which being a key range parameter could potentially increase both the range and endurance of the aircraft. The major geometric bump parameters such as length, height, crest and span have been altered for both the two-dimensional and three-dimensional bumps in order to obtain the optimum location and shape of the bump. Once an optimum standalone three-dimensional bump has been acquired an array of bumps has been manually placed spanwise of an unswept supercritical wing and analysed under fully turbulent flow conditions. Different configurations have been tested with varying three-dimensional bump spacing in order to determine the contribution of bump spacing on overall performance. The results show a 14 percent drag reduction and a consequent 16 percent lift to drag ratio rise at the design Mach number for the optimum arrangement of bumps along the wing span. This innovative technique proves to be a bridge between economical problems and engineering solutions and a milestone for aviation engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call