Abstract

A humanoid robot under real-world environments usually hears mixtures of sounds, and thus three capabilities are essential for robot audition; sound source localization, separation, and recognition of separated sounds. We have adopted the missing feature theory (MFT) for automatic recognition of separated speech, and developed the robot audition system. A microphone array is used along with a real-time dedicated implementation of geometric source separation (GSS) and a multi-channel post-filter that gives us a further reduction of interferences from other sources. The automatic speech recognition based on MFT recognizes separated sounds by generating missing feature masks automatically from the post-filtering step. The main advantage of this approach for humanoid robots resides in the fact that the ASR with a clean acoustic model can adapt the distortion of separated sound by consulting the post-filter feature masks. In this paper, we used the improved Julius as an MFT-based automatic speech recognizer (ASR). The Julius is a real-time large vocabulary continuous speech recognition (LVCSR) system. We performed the experiment to evaluate our robot audition system. In this experiment, the system recognizes a sentence, not an isolated word. We showed the improvement in the system performance through three simultaneous speech recognition on the humanoid SIG2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call