Abstract

Functional molecular wires are essential for the development of molecular electronics. Charge transport through molecules occurs primarily by means of two mechanisms, coherent superexchange and incoherent charge hopping. Rates of charge transport through molecules in which superexchange dominates decrease approximately exponentially with distance, which precludes using these molecules as effective molecular wires. In contrast, charge transport rates through molecules in which incoherent charge hopping prevails should display nearly distance independent, wirelike behavior. We are now able to determine how each mechanism contributes to the overall charge transport characteristics of a donor-bridge-acceptor (D-B-A) system, where D = phenothiazine (PTZ), B = p-oligophenylene, and A = perylene-3,4:9,10-bis(dicarboximide) (PDI), by measuring the interaction between two unpaired spins within the system's charge separated state via magnetic field effects on the yield of radical pair and triplet recombination product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call