Abstract

We introduce the Maker–Breaker domination game, a two player game on a graph. At his turn, the first player, Dominator, selects a vertex in order to dominate the graph while the other player, Staller, forbids a vertex to Dominator in order to prevent him to reach his goal. Both players play alternately without missing their turn. This game is a particular instance of the so-called Maker–Breaker games, that is studied here in a combinatorial context. In this paper, we first prove that deciding the winner of the Maker–Breaker domination game is pspace-complete, even for bipartite graphs and split graphs. It is then showed that the problem is polynomial for cographs and trees. In particular, we define a strategy for Dominator that is derived from a variation of the dominating set problem, called the pairing dominating set problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.