Abstract

In modern (Intel) processors, Last Level Cache (LLC) is divided into multiple slices and an undocumented hashing algorithm (aka Complex Addressing) maps different parts of memory address space among these slices to increase the effective memory bandwidth. After a careful study of Intel's Complex Addressing, we introduce a slice-aware memory management scheme, wherein frequently used data can be accessed faster via the LLC. Using our proposed scheme, we show that a key-value store can potentially improve its average performance ~12.2% and ~11.4% for 100% & 95% GET workloads, respectively. Furthermore, we propose CacheDirector, a network I/O solution which extends Direct Data I/O (DDIO) and places the packet's header in the slice of the LLC that is closest to the relevant processing core. We implemented CacheDirector as an extension to DPDK and evaluated our proposed solution for latency-critical applications in Network Function Virtualization (NFV) systems. Evaluation results show that CacheDirector makes packet processing faster by reducing tail latencies (90-99th percentiles) by up to 119 μs (~21.5%) for optimized NFV service chains that are running at 100 Gbps. Finally, we analyze the effectiveness of slice-aware memory management to realize cache isolation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.