Abstract
In order to guarantee confidentiality and privacy of firm-level data, statistical offices apply various disclosure limitation techniques. However, each anonymization technique has its protection limits such that the probability of disclosing the individual information for some observations is not minimized. To overcome this problem, we propose combining two separate disclosure limitation techniques, blanking and multiplication of independent noise, in order to protect the original dataset. The proposed approach yields a decrease in the probability of reidentifying/disclosing individual information and can be applied to linear and nonlinear regression models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.