Abstract
In this paper we show how the Zipf-Mandelbrot law is connected to the theory of majorization. Firstly we consider the Csiszár $f$-divergence for the Zipf-Mandelbrot law and then develop important majorization inequalities for these divergences. We also discuss some special cases for our generalized results by using the Zipf-Mandelbrot law. As applications, we present the majorization inequalities for various distances obtaining by some special convex functions in the Csiszár $f$-divergence for Z-M law like the Rényi $\alpha$-order entropy for Z-M law, variational distance for Z-M law, the Hellinger distance for Z-M law, $\chi^{2}$-distance for Z-M law and triangular discrimination for Z-M law. At the end, we give important applications of the Zipf's law in linguistics and obtain the bounds for the Kullback-Leibler divergence of the distributions associated to the English and the Russian languages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.