Abstract
As Artificial Intelligence (AI) making advancements in medical decision-making, there is a growing need to ensure doctors develop appropriate reliance on AI to avoid adverse outcomes. However, existing methods in enabling appropriate AI reliance might encounter challenges while being applied in the medical domain. With this regard, this work employs and provides the validation of an alternative approach – majority voting – to facilitate appropriate reliance on AI in medical decision-making. This is achieved by a multi-institutional user study involving 32 medical professionals with various backgrounds, focusing on the pathology task of visually detecting a pattern, mitoses, in tumor images. Here, the majority voting process was conducted by synthesizing decisions under AI assistance from a group of pathology doctors (pathologists). Two metrics were used to evaluate the appropriateness of AI reliance: Relative AI Reliance (RAIR) and Relative Self-Reliance (RSR). Results showed that even with groups of three pathologists, majority-voted decisions significantly increased both RAIR and RSR – by approximately 9% and 31%, respectively – compared to decisions made by one pathologist collaborating with AI. This increased appropriateness resulted in better precision and recall in the detection of mitoses. While our study is centered on pathology, we believe these insights can be extended to general high-stakes decision-making processes involving similar visual tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.