Abstract

In bioinformatics studies, many modeling tasks are characterized by high dimensionality, leading to the widespread use of feature selection techniques to reduce dimensionality. There are a multitude of feature selection techniques that have been proposed in the literature, each relying on a single measurement method to select candidate features. This has an impact on the classification performance. To address this issue, we propose a majority voting method that uses five different feature ranking techniques: entropy score, Pearson’s correlation coefficient, Spearman correlation coefficient, Kendall correlation coefficient, and t-test. By using a majority voting approach, only the features that appear in all five ranking methods are selected. This selection process has three key advantages over traditional techniques. Firstly, it is independent of any particular feature ranking method. Secondly, the feature space dimension is significantly reduced compared to other ranking methods. Finally, the performance is improved as the most discriminatory and informative features are selected via the majority voting process. The performance of the proposed method was evaluated using an SVM, and the results were assessed using accuracy, sensitivity, specificity, and AUC on various biomedical datasets. The results demonstrate the superior effectiveness of the proposed method compared to state-of-the-art methods in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call