Abstract

Condensed matter systems are continuously subjected to dissipation, which often has adverse effects on quantum phenomena. We focus on the impact of dissipation on a superconducting Rashba nanowire. We reveal that the system can still host Majorana zero-modes (MZMs) with a finite lifetime in the presence of dissipation. Most interestingly, dissipation can also generate two kinds of dissipative boundary states: four robust zero-modes (RZMs) and two MZMs, in the regime where the non-dissipative system is topologically trivial. The MZMs appear via bulk gap closing and are topologically characterized by a winding number. The RZMs are not associated with any bulk states and possess no winding number, but their emergence is instead tied to exceptional points. Further, we confirm the stability of the dissipation-induced RZMs and MZMs in the presence of random disorder. Our study paves the way for both realizing and stabilizing MZMs in an experimental setup, driven by dissipation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.