Abstract
The rare meson decays K+ → π−l+l′+ and D+ → K−l+l′+ (l, l′ = e, μ), which are induced by Majorana neutrino exchange and which are accompanied by lepton-number nonconservation, are considered. The effects of the meson structure are taken into account on the basis of the Gaussian model for the respective Bethe-Salpeter amplitudes. It is shown that existing direct experimental constraints on the decay branching ratios are overly lenient and therefore give no way to set realistic limits on effective Majorana masses. On the basis of the constraints on the lepton-mixing parameters and neutrino masses from precision measurements of electroweak processes, neutrino-oscillation experiments, searches for neutrinoless double-beta decay of nuclei, and cosmological data, indirect constraints on the branching ratios for the decays in question are obtained and found to be much more stringent than the above direct constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.