Abstract

We propose the inverse seesaw mechanism as a way to understand small Majorana masses for neutrinos in warped extra dimension models with seesaw scale in the TeV range. The ultra-small lepton number violation needed in implementing inverse seesaw mechanism in 4D models is explained in this model as a consequence of lepton number breaking occurring on the Planck brane. We construct realistic models based on this idea that fit observed neutrino oscillation data for both normal and inverted mass patterns. We compute the corrections to light neutrino masses from the Kaluza–Klein modes and show that they are small in the parameter range of interest. Another feature of the model is that the absence of global parity anomaly implies the existence of at least one light sterile neutrino with sterile and active neutrino mixing in the range suggested by the LSND and MiniBooNE observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call