Abstract

We consider Majorana fermions tunneling among an array of vortices in a 2D chiral p-wave superconductor or equivalent material. The amplitude for Majorana fermions to tunnel between a pair of vortices is found to necessarily depend on the background superconducting phase profile; it is found to be proportional to the sine of half the difference between the phases at the two vortices. Using this result we study tight-binding models of Majorana fermions in vortices arranged in triangular or square lattices. In both cases we find that the aforementioned phase-tunneling relationship leads to the creation of superlattices where the Majorana fermions form macroscopically degenerate localizable flat bands at zero energy, in addition to other dispersive bands. This finding suggests that tunneling processes in these vortex arrays do not change the energies of a finite fraction of Majorana fermions, contrary to previous expectation. The presence of flat Majorana bands, and hence less-than-expected decoherence in these vortex arrays, bodes well for the prospects of topological quantum computation with large numbers of Majorana states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.