Abstract

Signatures of Majorana fermion bound states in one-dimensional topological insulator (TI) nanowires with proximity effect induced superconductivity are studied. The phase diagram and energy spectra are calculated for single TI nanowires and it is shown that the nanowires can be in the topological invariant phases of winding numbers $W=0, \pm 1$, and $\pm 2$ corresponding to the cases with zero, one and two pairs of Majorana fermions in the single TI nanowires. It is also shown that the topological winding numbers, i.e., the numbers of pairs of Majorana fermions in the TI nanowires can be extracted from the transport measurements of a Josephson junction device made from two TI nanowires, while the sign in the winding numbers can be extracted using a superconducting quantum interference device (SQUID) setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.