Abstract
In magneto-photoluminescence (magneto-PL) spectra of quasi two-dimensional islands (quantum dots) having seven electrons and Wigner–Seitz radius rs~1.5, we revealed a suppression of magnetic field (B) dispersion, paramagnetic shifts, and jumps of the energy of the emission components for filling factors ν > 1 (B < 10 T). Additionally, we observed B-hysteresis of the jumps and a dependence of all these anomalous features on rs. Using a theoretical description of the magneto-PL spectra and an analysis of the electronic structure of these dots based on the single-particle Fock–Darwin spectrum and many-particle configuration-interaction calculations, we show that these observations can be described by the rs-dependent formation of the anyon (magneto-electron) composites (ACs) involving single-particle states having non-zero angular momentum and that the anyon states observed involve Majorana modes (MMs), including zero-B modes having an equal number of vortexes and anti-vortexes, which can be considered as Majorana anyons. We show that the paramagnetic shift corresponds to a destruction of the equilibrium self-formed ν~5/2 AC by the external magnetic field and that the jumps and their hysteresis can be described in terms of Majorana qubit states controlled by B and rs. Our results show a critical role of quantum confinement in the formation of magneto-electrons and implies the liquid-crystal nature of fractional quantum Hall effect states, the Majorana anyon origin of the states having even ν, i.e., composite fermions, which provide new opportunities for topological quantum computing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.