Abstract
The deposition of metal-rich black or reddish muds by many thermal springs in the Cordilleras and the Altiplano of Bolivia suggest that these geothermal waters may be related to those that once formed the world-class Bolivian tin, silver and gold mineralisation. The discharge temperatures of these springs are as high as 70°C. According to δ18O, δD, tritium data and Ar/N2 ratios these waters are predominantly of meteoric origin. Less than 10% of the discharging thermal water represents deep-seated metal-rich thermal brines of at least 530°C according to carbon exchange between CO2 and CH4. These brines ascend along tectonic faults and mix with low-temperature meteoric water in surface-near aquifers. The meteoric component of the thermal water is recharged in the high Cordilleras with residence times exceeding 50 years. The chemical composition of the thermal water is dominated by the rather inefficient low-temperature leaching of the surface-near aquifer rocks by meteoric water. The small fraction of metal-rich hot deep-seated water is not able to increase the metal content of the water mix to a level sufficient to classify these thermal waters as ore-bearing. Surface-near leaching is supported, e.g., by the B/Li ratios of the spring water of the Western Cordillera and Caleras/Pulacayo in the Eastern Cordillera that correspond very closely to that of the easily leachable glassy inclusions of the outcropping andesitic lavas. The often remarkable metal content of the muds deposited by the springs originate from efficient scavenging of heavy metals by ferric oxyhydroxides. Under the given arid to semi-arid climate the muds are additionally enriched in metals by wind-transported dust. The present study does support a relation of the actual thermal waters with neither the classical subduction-related Upper Tertiary tin, silver and gold mineralisation nor the supposed younger Sb mineralisation of Bolivia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemie der Erde - Geochemistry - Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.