Abstract

Evaluating the decomposition-based change dynamics of various elements in plant litter is important for improving our understanding about their biogeochemical cycling in ecosystems. We have studied the concentrations of major, trace, and rare earth elements (REEs) (34 elements) in green tissue litter, and soil and their dynamics in the decomposing litters of successional annual fleabane (Erigeron annuus) and silvergrass (Miscanthus sinensis). Concentrations of major and trace elements in the litter of annual fleabane were 1.02–2.71 times higher compared to silvergrass. For REEs the difference between the two litter types for elements studied was in the range of 1.02–1.29 times. Both the litters showed a general decrease in the concentrations of elements in the initial stages of decomposition (60–90 days). All the major and trace elements (except for Na) in silvergrass showed a net increase in concentration at the end of the decomposition study (48.9–52.5% accumulated mass loss). Contrastingly, a few trace elements (Mn, Mo, Sr, Zn, Sb, and Cd) in annual fleabane showed a net decrease in their concentrations. For REEs, there was an increase in concentrations as well as in net amounts in both litter types. Similarities observed in the dynamics together with high and significant correlations among them likely suggest their common source. The higher concentrations of REEs in soil likely suggest its role in the net increase in REEs' concentrations and amount in litter during decomposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.