Abstract

A critical driver of the ocean carbon cycle is the downward flux of sinking organic particles, which acts to lower the atmospheric carbon dioxide concentration. This downward flux is reduced by more than 70% in the mesopelagic zone (100 to 1000 meters of depth), but this loss cannot be fully accounted for by current measurements. For decades, it has been hypothesized that the missing loss could be explained by the fragmentation of large aggregates into small particles, although data to test this hypothesis have been lacking. In this work, using robotic observations, we quantified total mesopelagic fragmentation during 34 high-flux events across multiple ocean regions and found that fragmentation accounted for 49 ± 22% of the observed flux loss. Therefore, fragmentation may be the primary process controlling the sequestration of sinking organic carbon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.