Abstract

The nuclear matrix may be involved in the structural and functional organization of the cell nucleus. However, we still do not understand the molecular basis of the intranuclear fibrogranular network that is part of the nuclear matrix. We recently described a method to identify internal nuclear matrix proteins [Mattern et al. (1996): J Cell Biochem 62:275-289], which was done by comparing two nuclear matrix preparations: one with and one without the internal structure by using quantitative two-dimensional gel electrophoresis. In the present study, we use the same approach to compare the nuclear matrix proteins of four different human cell types to investigate whether they have a similar internal nuclear matrix protein composition. Major nuclear matrix proteins present in all these cell types likely represent the base of the internal nuclear matrix. We demonstrate that the 25 most abundant internal nuclear matrix proteins are common to all four cell types. Together, these common proteins represent more than 75% of the total internal nuclear matrix protein mass in each cell type. This set of proteins includes B23 and most hnRNP proteins. The quantity of most of these proteins is very similar in the four cell types. The fact that the internal nuclear matrix consists mainly of hnRNP proteins, which may be involved in transcription, transport, and processing of hnRNA, supports the idea that the internal nuclear matrix is the result of these processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call