Abstract
There have been numerous attempts to use long-chain alkenones (LCAs) in saline lakes for paleotemperature and paleosalinity reconstructions. However, LCAs in saline lakes are often produced by multiple haptophyte species, which may confound data interpretations. Here we analyzed LCAs in a finely laminated, high sedimentation rate core from the hypersaline Lake Gahai in the northern Qinghai-Tibetan Plateau and compared our results with regional instrumental records. We find that LCA unsaturation ratios display a stepwise jump during the instrumental period, most likely originating from a sudden shift in the dominant alkenone producers. In contrast, the percentage of the C37:4 alkenone (%C37:4) displays strong correlations with spring and combined winter-spring precipitation amount (R2 = 0.83 and R2 = 0.81, respectively). We hypothesize that high winter-spring precipitation leads to greater freshening of lake surface water immediately after spring melting, promoting greater production of LCAs with relatively high %C37:4 values by the early blooming haptophyte species. Extending the instrumental calibration downcore allows us to quantitatively reconstruct regional spring and winter-spring precipitation for the past millennium. We find a major increase in winter-spring precipitation during the Little Ice Age (LIA), especially during the phases of solar minima. Our finding provides novel quantitative support to the previous studies suggesting relatively wet conditions during the LIA in the westerly dominated regions of central Asia and northern Tibetan Plateau and infers a substantial increase in regional winter-spring precipitation should the predicted grand solar minimum in the forthcoming decades become a reality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.