Abstract

We investigate the similarities and differences among three queue rules, the first-in-first-out (FIFO) rule, last-in-first-out (LIFO) rule and random-in-random-out (RIRO) rule, on dynamical networks with limited buffer size. In our network model, nodes move at each time step. Packets are transmitted by an adaptive routing strategy, combining Euclidean distance and node load by a tunable parameter. Because of this routing strategy, at the initial stage of increasing buffer size, the network density will increase, and the packet loss rate will decrease. Packet loss and traffic congestion occur by these three rules, but nodes keep unblocked and lose no packet in a larger buffer size range on the RIRO rule networks. If packets are lost and traffic congestion occurs, different dynamic characteristics are shown by these three queue rules. Moreover, a phenomenon similar to Braess’ paradox is also found by the LIFO rule and the RIRO rule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.