Abstract

Major element compositional overlap exists between microspherules of different microtektite layers or strewnfields. For this reason, microspherules of similar composition cannot, a priori, be assumed to belong to the same microtektite event and those of different compositions cannot, a priori, be assumed to result from different events. Nevertheless, despite major element compositional overlap between microspherules of different strewnfields, multivariate factor analysis shows microtektites and related microspherules of three stratigraphically different late Eocene layers to follow recognizably different compositional trends.The microtektite population of the North American strewnfield (Globorotalia cerroazulensis Zone) follows compositionally well defined trends and is characterized by high concentrations of SiO2, Al2O3, and TiO2. The microspherule population of the slightly older crystal‐bearing Globorotalia cerroazulensis Zone microspherule layer is more heterogeneous and characterized by microspherules which are relatively enriched in FeO and MgO and relatively impoverished in SiO2 and TiO2. The microspherule population of the oldest microspherule layer in the uppermost Globigerapsis semiinvoluta Zone is highly heterogeneous and characterized by microspherules which are relatively enriched in CaO and impoverished in Al2O3 and Na2O. Individual microspherules of this oldest late Eocene horizon often exhibit major element compositions similar to those of the lower Gl. cerroazulensis Zone layer and occasionally exhibit major element compositions similar to North American layer microtektites. Nevertheless, late Eocene microspherule occurrences can be assigned to appropriate late Eocene microtektite horizons on the basis of major element compositional trends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.