Abstract

There is a growing body of evidence for the origin of cratonic mantle eclogite xenoliths by low-pressure formation in now-recycled ocean floors. Because they have protoliths ultimately derived from the convecting mantle, their study can potentially yield unprecedented insights into as yet little-understood palaeo-geodynamic regimes, once primary (fractional crystallisation, accumulation, mixing) and secondary processes (kimberlite infiltration, metasomatism) affecting their compositions are understood. This is achieved using diagnostic concentrations or ratios of the analytically and geologically most robust elements (major and minor elements, transition metals, REE), and aided by comparison to natural and modelled analogues. Here, mineral compositions taken from the literature were used to reconstruct bulk rocks and assign the samples to eclogites (further divided into high-Mg, low-Mg and high-Ca types), pyroxenites and their gabbroic (Eu* >1.05) counterparts.Various protolith types – formed predominantly by <1GPa crystallisation from broadly picritic magmas leaving garnet-poor mantle sources – are identified: (1) Many high-Mg eclogites lie on modelled crystallisation trends between 0.5 and <1GPa. Some have elevated FeO contents with lower SiO2 and CaO possibly requiring Fe-rich pyroxenite heterogeneities in their mantle source. (2) Many high-Ca eclogites may be the differentiated (higher Na2O, TiO2 and FeO at lower MgO) equivalents of high-Mg eclogites, following modelled crystallisation trends at somewhat lower pressure (0.05 to 0.5GPa). Other high-Ca eclogites with low FeO were produced during interaction with fluids and melts in mélange-type settings. (3) Low-Mg eclogites, with intermediate MgO content, are too FeO-rich to be intermediary crystallisation products of the same parental melt and are ascribed to melting out of Fe-rich lithologies possibly related to recycling of eclogite and/or contamination with ferromanganese sediments. (4) The positive Eu anomalies in gabbroic eclogites require accumulation of substantial amounts of plagioclase, consistent with their low FeO and TiO2 contents, but their simultaneously low MgO contents suggest that they interacted with residual melts. (5) The elevated CaO and low Al2O3 in pyroxenite may indicate clinopyroxene-rich high- or low-pressure cumulate protoliths, but high Cr2O3 and MgO, combined with low HREE and high LREE in many of these samples, suggests formation by hybridisation of eclogite-derived melt with peridotite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.