Abstract
General geochemical parameters of water, superficial sediments, and suspended particulate matter (SPM) were determined from small shallow saline lakes (soda ponds) as well as from lake Neusiedlersee in eastern Austria. Additionally, instrumental neutron activation analysis (INAA) was used to determine the distribution of major, rare earth and other trace elements in superficial sediments and SPM. Chemical results show remarkable differences in salinity and ionic strength between the investigated ponds. Anthropogenic effects, such as drawdown of ground water level and a loss of lake water due to drainage, are clearly reflected in obtained chemical and geological data. Due to a strong dependence of the complexation and scavenging behavior of the rare earth elements (REE) on ionic strength, a significant difference between REE concentrations in soda ponds with different anthropogenic impact was found. The content and composition of authigenic evaporitic minerals in superficial sediments and SPM clearly differ with a fluctuating water level and salt concentration. Furthermore, we determined the distribution of major and trace elements in superficial sediments of a nearby fluvial system. Our results show a clear correlation between REE superficial sediment concentrations in anthropogenically degraded soda ponds and fluvial system. Therefore, we assume that REE concentrations of sediments and SPM are suitable for the study of geochemical changes of inland saline lakes due to anthropogenic impacts on water balance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.