Abstract

Major, trace and rare earth element (REE) geochemistry of the late Cretaceous lower Zhoutian Formation from the Jitai Basin of Southeast China were measured by inductively coupled plasma mass spectrometry (ICP-MS) analysis to infer the provenance of the sediments and to reconstruct the palaeoenvironment and palaeoclimate. The wide range of Sr/Cu ratios point to a fluctuating palaeoclimate, and the negative correlation between the FeO/MnO and Al2O3/MgO ratios and the Sr/Cu ratio indicates that the late Cretaceous climate during the lower Zhoutian Formation in the Jitai Basin can be divided into two parts. The lower part experienced two cooling periods, whilst the upper part was dominated by warm-humid climate. Mostly corresponding trends of the B/Ga, Sr/Ba and Sr/Cu ratios show that the salinity changed consistently with the late Cretaceous climate during the lower Zhoutian Formation in the Jitai Basin. During the lower part, the salinity changed from salt water to fresh/brackish water. In the upper part, water was mainly fresh/brackish, and there were many changes from fresh/brackish water to salt water. The relatively stable Ni/Co, V/Cr, V/(V + Ni) and Ce/Ce* data indicate a long period of oxic conditions. The La-Th-Sc, Th-Sc-Zr/10 and La/Th-Hf data of the silt- and sandstones of the lower Zhoutian Formation show that its provenance was mainly a mixture of felsic upper crust sediments and older sedimentary rocks.

Highlights

  • Major, trace and rare earth element (REE) geochemistry of the late Cretaceous lower Zhoutian Formation from the Jitai Basin of Southeast China were measured by inductively coupled plasma mass spectrometry (ICP-MS) analysis to infer the provenance of the sediments and to reconstruct the palaeoenvironment and palaeoclimate

  • As an important carrier of geological information, the geochemical characteristics of clastic rocks record the significant information of provenance, structure, environment and ecological evolution in a reliable and detailed way

  • Some major and trace elements that dissolve in water are sensitive to climatic change, and they can be used as a valuable proxies of palaeoclimate e­ volution[5]

Read more

Summary

Introduction

Trace and rare earth element (REE) geochemistry of the late Cretaceous lower Zhoutian Formation from the Jitai Basin of Southeast China were measured by inductively coupled plasma mass spectrometry (ICP-MS) analysis to infer the provenance of the sediments and to reconstruct the palaeoenvironment and palaeoclimate. Corresponding trends of the B/Ga, Sr/Ba and Sr/Cu ratios show that the salinity changed consistently with the late Cretaceous climate during the lower Zhoutian Formation in the Jitai Basin. The La-Th-Sc, Th-Sc-Zr/10 and La/Th-Hf data of the silt- and sandstones of the lower Zhoutian Formation show that its provenance was mainly a mixture of felsic upper crust sediments and older sedimentary rocks. In order to accumulate more geological information and to better understand the late Cretaceous characteristics of the Jitai Basin, we conducted geochemical analyses of major, trace and rare elements of silty mudstones and calcilutites of the lower Zhoutian Formation.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.