Abstract

The plant-microbe interaction can affect ecosystem function, and many studies have demonstrated that plant species influence relevant microorganisms. In this study, microbial communities in bulk soil, rhizosphere soil and phyllosphere from different maize varieties were investigated using high-throughput sequencing method. Results demonstrated that cultivar Gaoneng 1 (G1) showed higher bacterial diversity in soil (both bulk and rhizosphere soils) and lower bacterial diversity in the phyllosphere, while cultivar Gaoneng 2 (G2) had lower fungal diversity in both the soil and phyllosphere compare to the other cultivars. The bacterial community structure of soils among the three varieties was significantly different; however, no significant differences were found in the soil fungal community and phyllosphere bacterial and fungal community. The soil networks from cultivar G1 and phyllosphere networks from cultivar Zhengdan (ZD) have the highest complexity in contrast to the other two cultivars. In conclusion, the bacterial community structure in bulk soil of different cultivars was significantly different, so do the co-occurrence ecological networks of phyllosphere bacterial community. This study comprehensively analyzed the microbial community among different maize cultivars and could be useful for guiding practices, such as evaluation of new plant cultivars and quality predictions of these varieties at the microbial level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call