Abstract
The study was carried to determine the labile carbon contents in biochar pyrolyzed under different temperatures and its effect on urea hydrolysis rate. Corn stovers were pyrolyzed at highest temperature of 300°C, 500°C and 700 °C to produce fresh biochar. Soil incubation experiment was conducted with biochar application rate of 0% and 2% with presence of urea. The results showed that biochars accelerated urea hydrolysis, and high temperature pyrolyzed biochar have more significant effect on soil pH enhances and acceleration of urea hydrolysis than biochar pyrolyzed at low temperature. Moreover, biochar produced at 300°C contains relative high concentration of labile carbon, and 43-64% of labile carbons were oxidized within 40 days incubation. The labile carbon in biochars also leaded microbes thrives and resulted in accelerate short-term N turnover. i.e. at early stage of incubation, fresh biochar increased mineralization of soil N by 79-449 mg•kg−1, and matured biochar by 30-61 mg•kg−1, but microbial immobilization effect was observed in fresh biochar-amended soil at the end of incubation. We concluded that aged biochar is suitable for simultaneous soil amendment with urea rather than newly produced biochar as it can promote available N accumulation in short time thus increase the risk of inorganic nitrogen leaching loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.