Abstract
Water, salinity and nitrogen are the major factors affecting maize production in arid and semi-arid areas. The objectives of this study were to investigate the effects of different water, salinity and nitrogen levels on yield-water relationships, water use, water productivity (WP), water use efficiency (WUE) and water uptake reduction function by maize hybrid SC-704 in a semi-arid area and silty clay loam soil. A split-split-plot design with three replications in two years of 2009 and 2010 was conducted. The different levels of irrigation water considered as main plot, salinity of irrigation water as sub-plot and nitrogen fertilizer rate as sub-sub-plot. Irrigation treatments consisted of I1 (1.0ETc+0.25ETc as leaching), I2 (0.75I1) and I3 (0.50I1) applied at 7-day intervals. The salinity treatments of irrigation were 0.6 (fresh water), 2.0 and 4.0 dS m -1 . There were also three nitrogen (N) treatments including 0, 150 and 300 kg N ha -1 . Results showed that the actual crop ET and transpiration (T) were significantly less in I3 as compared to I1 treatments as 42 and 43%, respectively. Besides, T values under S3 were statistically less than that in S1 treatment as 12%. The soil evaporation (E) values were 26, 31 and 27% of ET at I1, I2 and I3 treatments, respectively and its values significantly increased with increasing salinity levels of irrigation water. The minimum and maximum amount of E occurred at I3S1N3 and I1S3N3, respectively. The study showed that deficit irrigation as 0.50I1 and 0.75 I1 were the optimum levels of irrigation to access the highest WP and WUE for dry matter (DM) and grain yield (GY) respectively. Besides, S1 was the optimum treatment for achievement of highest WP and WUE for DM and GY. Results also indicated that the optimum treatment for WP and WUE for GY was I2S1N3. Furthermore, N fertilization could not statistically improve WP and WUE beyond 150 kg N ha -1 . The yield response factor to water showed that maize GY was more sensitive to water than its DM. Results also
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.