Abstract
Plant height is a significant indicator of maize phenotypic morphology, and is closely related to crop growth, biomass, and lodging resistance. Obtaining the maize plant height accurately is of great significance for cultivating high-yielding maize varieties. Traditional measurement methods are labor-intensive and not conducive to data recording and storage. Therefore, it is very essential to implement the automated reading of maize plant height from measurement scales using object detection algorithms. This study proposed a lightweight detection model based on the improved YOLOv5. The MobileNetv3 network replaced the YOLOv5 backbone network, and the Normalization-based Attention Module attention mechanism module was introduced into the neck network. The CioU loss function was replaced with the EioU loss function. Finally, a combined algorithm was used to achieve the automatic reading of maize plant height from measurement scales. The improved model achieved an average precision of 98.6%, a computational complexity of 1.2 GFLOPs, and occupied 1.8 MB of memory. The detection frame rate on the computer was 54.1 fps. Through comparisons with models such as YOLOv5s, YOLOv7 and YOLOv8s, it was evident that the comprehensive performance of the improved model in this study was superior. Finally, a comparison between the algorithm's 160 plant height data obtained from the test set and manual readings demonstrated that the relative error between the algorithm's results and manual readings was within 0.2 cm, meeting the requirements of automatic reading of maize height measuring scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.