Abstract

In China, narrow-wide row planting pattern has been advocated for maize (Zea mays L.) production. However, no previous study has clearly elucidated the complexity of factors affecting maize canopy such as the microclimatic factors, and the effect of photosynthesis in narrow-wide row planting pattern. The current study was undertaken to identify the planting patterns that influence microclimatic conditions and photosynthesis of two maize cultivars (Beiyu288 and Xianyu335) grown in three planting patterns: narrow-wide rows of (1) 30 cm + 170 cm (P1, 6.4 plants m-2), and (2) 40 cm + 90 cm (P2, 6.4 plants m-2), and (3) uniform row of 65 cm (CK, conventional row as control, 6.4 plants m-2). Light interception, temperature, relative humidity (RH), CO2 concentration, and leaf photosynthesis within the canopy were measured in each planting treatment at the grain-filling stage. The net photosynthetic rate (P N), intercellular CO2 concentration (C i), stomatal conductance (g s), transpiration rate (E), and temperature of the narrow-wide row exceeded that of the conventional row. The CO2 concentration and RH of the narrow-wide row were lower than CK by 50 cm strata. The narrow-wide row had a more uniform light intercepted at the whole canopy profile. The results of the current study suggest that narrow-wide row-planting pattern has a positive effect on canopy microclimate factors and promotes photosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call