Abstract

This study presents the development of a maize ear model and a predictive approach for kernel damage in maize threshing, integrating physical simulation and predictive analytics to understand better and forecast threshing-related damage. First, a maize ear model was developed to analyse kernel damage during threshing. Through the angle of repose experiments, the optimal number of spheres for the kernel model was established as 65. Tensile tests were conducted to evaluate the kernel-cob bond strength, revealing an average relative error in the bonding force of 8.71%. Vogel impact energy modelling was applied to the kernel threshing process to determine kernel damage. The correlation between the speed of seed grain movement and the occurrence of damage was analysed by post-processing to identify locations with frequent kernel damage in the drum. In-depth data analysis of kernel damage in the threshing drum further elucidates the inherent relationship between kernel velocity and damage extent. The study then focused on applying neural networks to predict damage rates. The comparative evaluation shows that the PSO-LSTM model has better prediction accuracy than LSTM and RNN models, with the PSO-LSTM network achieving an RMSE of 0.096, a R2 of 99.96%, and a final damage rate of 2.41% in validation tests. Threshing experiments were conducted to verify the model, showing a 1.4% discrepancy between predicted and actual damage rates. This study proposes a kernel damage prediction model and provides new insights and directions for the structural design of threshing drums.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.