Abstract

The recent availability of high spatial and temporal resolution (HSTR) remote sensing data (Formosat-2, and future missions of Venμs and Sentinel-2) offers new opportunities for crop monitoring. In this context, we investigated the perspective offered by coupling a simple algorithm for yield estimate (SAFY) with the Formosat-2 data to estimate crop production over large areas. With a limited number of input parameters, the SAFY model enables the simulation of time series of green area index (GAI) and dry aboveground biomass (DAM). From 2006 to 2009, 95 Formosat-2 images (8m, 1day revisit) were acquired for a 24×24km² area southwest of Toulouse, France. This study focused on two summer crops: irrigated maize (Zea mays) and sunflower (Helianthus annuus). Green area index (GAI) time series were deduced from Formosat-2 NDVI time series and were used to calibrate six major parameters of the SAFY model. Four of those parameters (partition-to-leaf and senescence function parameters) were calibrated per crop type based on the very dense 2006 Formosat-2 data set. The retrieved values of these parameters were consistent with the in situ observations and a literature review. Two of the major parameters of the SAFY model (emergence day and effective light-use efficiency) were calibrated per field relative to crop management practices. The estimated effective light-use efficiency values highlighted the distinction between the C4 (maize) and C3 (sunflower) plants, and were linked to the reduction of the photosynthesis rate due to water stress. The model was able to reproduce a large set of GAI temporal shapes, which were related to various phenological behaviours and to crop type. The biomass was well estimated (relative error of 28%), especially considering that biomass measurements were not used for the calibration. The grain yields were also simulated using harvest index coefficients and were compared with grain yield statistics from the French Agricultural Statistics for the department of Haute-Garonne. The inter-annual variation in the simulated grain yields of sunflower was consistent with the reported variation. For maize, significant discrepancies were observed with the reported statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.